A Remainder Formula and Limits of Cardinal Spline Interpolants

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Taylor’s Formula with Remainder

In this paper, we present a proof in ACL2(r) of Taylor’s formula with remainder. This important theorem allows a function f with n + 1 derivatives on the interval [a, b] to be approximated with a Taylor series of n terms centered at a. Moreover, the formula allows the error in the approximation to be bounded by a term involving the (n + 1)st derivative of f on (a, b). The results in this paper ...

متن کامل

Numerical integration using spline quasi-interpolants

In this paper, quadratic rules for obtaining approximate solution of definite integrals as well as single and double integrals using spline quasi-interpolants will be illustrated. The method is applied to a few test examples to illustrate the accuracy and the implementation of the method.

متن کامل

Quadratic spline quasi-interpolants and collocation methods

Univariate and multivariate quadratic spline quasi-interpolants provide interesting approximation formulas for derivatives of approximated functions that can be very accurate at some points thanks to the superconvergence properties of these operators. Moreover, they also give rise to good global approximations of derivatives on the whole domain of definition. From these results, some collocatio...

متن کامل

Effortless construction of hierarchical spline quasi-interpolants

Quasi-interpolation is a well-known technique to construct accurate approximants to a given set of data or a given function by means of a local approach. A quasi-interpolant is usually obtained as a linear combination of a given system of blending functions that form a convex partition of unity and possess a small local support. These properties ensure both numerical stability and local control...

متن کامل

A Cardinal Spline Approach to Wavelets

While it is well known that the mth order 5-spline Nm(x) with integer knots generates a multiresolution analysis, • • • C V_x c V0 C • ■ • , with the with order of approximation, we prove that i//(x) := Ú1mJ¡{2x 1), where L2m(x) denotes the (2m)th order fundamental cardinal interpolatory spline, generates the orthogonal complementary wavelet spaces Wk . Note that for m = 1 , when the ß-spline N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1982

ISSN: 0002-9947

DOI: 10.2307/1998893